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Any statements made during this talk are In
my capacity as an academic



Outline: Chemical and biological data, its
complexities, and applications to safety

- Chemical and biological data: The flat-earth view
- And where a flat earth Is great!

- Chemical and biological data: The round-earth view
- Drug discovery data and its complexity

- Using ‘omics data and analytical methods, vs single-endpoint
data and synthetic methods, for predictive safety

- Using ‘omics data in DIVI, time-resolved gene expression data for AOP
derivation in DILI

- Anticipating DILI using assay-based information plus PK
approximations

- Machine learning for PK




A simple view on the world: Linking Chemistry, Phenotype,
Targets / Mode of Action (myself, until ca. 2010)
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é!“ Molecular “The world is flat”

Structure
= “We believe our labels”
Phenotypic
Sets'oo”se | g'otaCt'V'ty (which are often insufficiently
a9 N quantified, not directed,

unconditional, don’t have time/
concentration/biological setup
dependence, etc.)

Phenotype ‘Pathways’ Protein /
Mode of Action




Starting from in vivo efficacy we can hypothesize the
MoA, based on ligand chemistry
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Mode of Action
A. Koutsoukas et al., J Proteomics 2011 (74) 2554 — 2574.




The ‘flat earth’ view can still help! Eg Public target
prediction model, based on ~200 mio data points

- E.g. work of Lewis Mervin, with AstraZeneca

2015, J. Cheminformatics (7) 51

ChEMBL actives (~300k), PubChem inactives (~200m); 1,080 targets
Can be retrained on in-house data -
https://github.com/lhmBO/PIDGIN
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Also data publicly available



So: Using bioactivity data for ligand-protein activity
modelling ‘Is relatively possible’

We make use of existing data (millions of data points!)

On-target bioactivities (links between chemical structure and
protein targets) are relatively large-scale, and relatively
nomogenous

- Hence, generating models for bioactivities is ‘possible’
Can also be used for design (eg multi-target ligands)

BUT:

- Only covers known chemical space

- Labels are still heterogenous

- In vivo relevance of predictions needs to be established
(PK, target engagement in vivo, etc.)




BUT...The world is not flat. What now?

tructure

Links between drugs/targets/diseases are guantitative, incompletely
characterized

Subtle differences in eg compound effects (partial vs full agonists, off- )
targets, residence times, biased signalling, etc.) Phenotype Pativays  protein

‘Pathways’ from very heterogenous underlying information; dynamic i
elements not captured etc.

Effects are state-dependent (variation between individuals, age, sex, co-
medication...) — PK is often rather neglected in Al approaches

Phenotyping Is sparse, subjective (deep phenotyping?)

We don’t understand biology (‘the system’), we don’t know what we should
label, and measure, hence ...

We label what we can measure: “Technology push’ vs ‘science pull’ (1)

Are our labels — ‘drug treats disease X’, ‘ligand is active against
target Y’, ... - meaningful?

Conditionality: Causality, confidence, quantification, ....?
Computer science is tremendously powerful... but is our data?




Example of difficulties with ‘labels’: adverse reactions

- “Does drug Y cause adverse reaction Z? Yes, or no?”

- Pharmacovigilance Department: Yes, if we have...
- A patient with this genotype (which is generally unknown)
- Who has this disease endotype (which is often insufficiently defined)
- Who takes dose X of drug Y (but sometimes also forgets to take it)
- With known targets 1...n, but also unknown targets (n+1...z)
- Then we see adverse reaction (effect) Z ...
- But only in x% of all cases and
- With different severity and
- Mostly if co-administered with a drug from class C, and then
- More frequently in males and
- Only long-term
- (Etc.)

- S0 —does drug Y cause adverse event Z?



Representation Model Object Label
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Data/’Al’ in early discovery vs efficacy/safety

Early discovery/proxy space Efficacy/safety (usually in vivo)
(usually in vitro)

- Often (eg
protein activity), hence... (to generate
data), fuzzy labels (classes
‘depend’, on exposure, multiple eg
histopathological endpoints) —
- Models have clear labels (within hence...
limits of model system, eg
‘ligand is active against protein

at IC50<10uM’, or solubilities, : Difficult from machine
logP, or the like) learning angle

- Good for model generation: - Data: Recording vs data suitable
Many, clearly categorized data for mining — eg animal data tricky,

points even within single company



Problem setting in early discovery vs safety

Early discovery/proxy space Efficacy/safety
— ‘find me
suitable 100s or 1000s out of
a million’ (eg screening)

based on limited data...

‘for now’, predicting absence of
predicting presence of ‘everything’ (eg different modes
something of toxicity)

- Computationally generative - Predictive models (more tricky

models often fine than generative!)



‘Omics vs endpoint-based safety models:
Conceptual differences and DIVI, DILI as case studies

— Systems-based (high-dimensional) readout

analysis :
v i
Vv v
. + Exposure/PK
And/or “Mode of Toxicity” » In vivo effect
Tat
synthesis

— Endpoint-based (low-dimensional) readout



Drug-Induced Vascular Injury (DIVI]): Work of Anika Liu, with GSK

* Biomechanical stress and/or direct action on the vascular cells can
initiate DIVI which is characterized by morphological vascular
changes, in particular medial arterial necrosis (MAN)

* Pathogenesis and translation to humans remain largely unclear,
also because DIVI can often not be monitored clinically and only
detected by histopathology.

* Despite small evidence for translation to humans, pre-clinical DIVI
leads to delays in compound development and/or and termination

Goal: Identify transcriptomic biomarkers for MAN in rats
which can help to understand and monitor pre-clinical DIVI.

UNIVERSITY OF SB Images from Dalmas, D. A., et al. Transcriptional Profiling of Laser Capture Microdissected Rat Arterial
g : Elements: Fenoldopam-Induced Vascular Toxicity as a Model System. Toxicol. Pathol. 2008, 36 (3), 496-519.
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Data generation by Dalmas et al. [']

Gene expression in Endothelium
Laser Capture Microdissected (LCM)

Mesenteric
Artery

Gene expression in Smooth muscle

14 Experiments [ Drug ] Laser Capture Microdissected (LCM)
(12 compounds total,
2/12 compounds at 2 timepoints) l I
| Histopathology

Medial arterial necrosis (MAN)

4 Compound doses
(e.qg. 0/1/30/300 mg/kg/day) Q 0 9

Data n(features) n(animals)
Gene.express.ion 15240 304
(Tunica media)

~5 Biological replicates @3@ Gene expression ;5549 300

(Tunica intima)

Histopathology 34 328

UNIVERSITY OF

W [1] Dalmas et al. (2011), Toxicology and Applied Pharmacology, 257(2), 284—-300.

T CAMBRIDGE gSk All studies were conducted in accordance with the GSK Policy on the Care, Welfare and Treatment of Laboratory Animals and were reviewed the

Institutional Animal Care and Use Committee either at GSK or by the ethical review process at the institution where the work was performed.




Criteria to identify potential transcriptomic biomarkers in DIVI

1) Consistency across conditions showing DIVI

2) Specificity for conditions showing DIVI

3) Dose-dependency of expression change for compounds showing DIVI
4) Large (measurable) effect across conditions showing DIVI

- |ldentify few most promising genes as potential biomarkers
(at the risk of losing many other relevant ones)

; / 4
UNIVERSITY OF gSB
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What is a “mechanism of toxicity”?

Associated

i1

Q
@)

@)

Conserved

Conserved and specific

(Mechanistic) biomarker

o
@)

Everything associated might
be relevant

* Most likely downstream

processes where AOP converges

e Distinguishes phenotype

Distinguishes phenotype + large
effect size

Many potential covariates

* Misses upstream regulation

which is likely compound-specific | *

*  Might miss key parts of AOP
Importance != Specificity

Little insight into mechanism
Importance != Effect size

Mechanism QTSI iomarker
High coverage Detected biological entity Strong evidence

. UNIVERSITY OF

Compound

A Adverse event

gsk)

“ 3 ”
A Noadverse event @ “Mechanism

Biological entity (Protein/pathway/..)

O Maybe “mechanism” (depending on evidence)

@ Not “mechanism”




Conserved genes across DIVI conditions are highly interlinked on protein level

Smooth muscle Endothelium

1) ldentify conserved genes
) y 8 (135 conserved genes) (50 conserved genes)

.~ Biomarker gene
2) ldentify protein-protein interactions (PPI)

between proteins encoded by conserved
genes (STRING!1)

@
3) Is the number of protein-protein » «<— Conserved gene
associations higher than expected at \ ¢
random? (PPl enrichment) .
p-value: < 1.0e-16 p-value: 5.6e-12

M5 UNIVERSITY OF gSB [1] Szklarczyk, et al. Nucleic Acids Res. 2019, 47 (D1), D607-D613.
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Ordered responses in DILI pathogenesis
(work of Anika Liu)

Adverse Event

Initiating &
Event
Protein

Red= M d
Molecular 1 cotment Effect ed= Measure
A i

Event sequence
Treatment

y

?

?
¢

Effect

Transcription Factor

mRNA i\

L]
omm

Gene

Key Event

 Extend AOP: If event A is observed, how likely and when will event B observed?
 Mechanistically: Link proteins expressed early with genes expressed late

5 UNIVERSITY OF
P CAMBRIDGE




Open TG-GATESs (ew

Toxicogenomics Project-Genomics Assisted Toxicity Evaluation System

A

(" High-

Middle
4 Doses <

Low 4

Control 4

8 Timepoints

Data types

o

Transcriptomics Histopathology
(Liver/Kidney) (Liver/Kidney)
>
170 Compounds
Experimental design
Single-dose Dclse faja::rifici
e I o
24h 24h 24h 24h
Sweek-age Oh 3h6hoh 24h T T T T T T T T
. Final Sacrifice  Final Sacrifice Final Sacrifice Final Sacrifice
Repeated-dose(daily) dose dose dose dose

5% UNIVERSITY OF
&% CAMBRIDGE

[1]Y. lgarashi et al., Nucleic Acids Res., 2015.




Deriving 18t activation per timeseries

\ 1. Histopathology

........ e mmemees « Toxscore > 0.1 = Null
9  Toxscore > 0.67 > Low
« Toxscore > 1.34 - High

| | | I
S & S & o © £ @
5 o O & D B D &
v F,0 ,\»P (96
‘ 2. Pathway activation
Significant difference to time and

experiment-matched control group

@__ (pval < 0.05)

(3 hr) (4 days)

[1] S. Hanzelmann et al. , BMC Bioinformatics, 2013. [3]J. J. Sutherland et al., Pharmacogenomics J., 2018.

UNIVERSITY OF [2] A. Liberzon, Bioinformatics, 2011.
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All known key events are

I l . I l I . f.
; . : - - : ; Mitochondrial
Bile acids Cell death Drug metabolism JNK signaling LXR signalling beta oxidation
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Anchoring event

1st adverse histopathology

Temporal relation

Before or at

Background

Compounds-dose combinations
without any histopathology

direction

Insignificant

0 Significant

Trade-off between specific and
frequent events is not as
pronounced as expected




My (personal) general learning w.r.t. high-
dimensional biological readouts

Common practical difficulties with high-dimensional biology data
(transcriptomics, also HCS etc.) are

- Many choices to be made/issues with the data (biological
system/dose/time point (!); reproducibility of controls, etc.)

- Also many choices to be made during analysis (choices determine
what we see!)

- Data often contains sufficient signal for signal detection (but
sometimes less so for ‘modelling’)

- Clear ‘love/hate relationship’ © - ‘works one third of the time, no (clear)
signal one third of the time, too much signal one third of the time’...
what to expect when?

- What do we label/measure? Is it technology push’, or ‘science pull’?
- We need (a) relevance of the model system and (b) a hypothesis!



‘Omics vs endpoint-based safety models:
Conceptual differences and DIVI, DILI as case studies

— Systems-based predictive signals

analysis :
\ A
v Vv
. + Exposure/PK
And/or “Mode of Toxicity” » |n vivo effect
Ta?
synthesis

— Endpoint-based predictive signals



Reverse-engineering organ toxicity from data

- Using modified rules to predict hepatotoxicity from
oxCast data; mechanistic, and PK-approximation

- Work of Samar Mahmoud

C5.0 rule

Hepatotoxcity Data |
(ToxRefDB) ‘ C5.0 algorithm {

I

1

Modified rule

ToxCast in vitro
Measuraments
Physioch em|La| Properties

Key Endpoint

Active in an assa e . i
L_N_E ' _ 5“{ Prioritizing endpoints _ Um:.la.-rstandmg
Inactive in an assay for in vitro models Bioactivity-Physchem

Physicochemical property interactions




Data and Methods — ToxCast, ToxRefDB
datasets, modified rules

Data: 673 compounds overlapping between 361 ToxCast assays
(at least 5% valid AC50 values) and ToxRefDB hepatotoxicity
readouts

Hepatotoxicity at 15 and 500 mg/kg/day

Added physicochemical properties as (crude) PK/PD
approximation

C5.0 classification rules, validated via 5-fold CV

Manual rule modification: Retain rules that are meaningful (eg no
negative activities for toxicity)

Rule selection according to coverage and accuracy

Note: Involves some manual steps, seems needed though (given
limited data!)



20 assays lead to 80% hepatotoxic compound coverage

Dose level

O LEL = 500mg/kg/day
e LEL = 15mg/kg/day
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Removing physiochemical properties led to deterioration of
predicting low dose toxicity, less so high dose toxicity
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Assays clustered based on shared rule membership gave CYP-
related, iImmunological, and nuclear receptor-related groups

Information Accuracy

Associated assay gain (split) (rule)

Gene symbol function

APR_HepG2_MitoMass_24h_up 2 NA
ATG_PPARg_TRANS_up X PPARG
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Cytochrome P
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- Used for suggesting assays to evaluate hepatotoxicity

- Comparison to commercial hepatotoxicity assays gave mostly overlap,
plus additional suggestions




Machine learning models for PK

In vivo PK data (rat, dog,
mouse) available on large
scale (1,000s-10,000s of

compounds)

ML models, based on
ligand structure only

Bayer, AstraZeneca, ...
models

Don’t require IVIVE;
consider ‘all’ mechanisms

Predictivity en par with/
better than e.g. well-stirred
models

2 J Chem Inf Model. 2019 Nov 25;59(11):4893-4905. doi: 10.1021/acs.jcim.9b00460.

Epub 2019 Nov 12.

Prediction of Oral Bioavailability in Rats:
Transferring Insights from in Vitro Correlations to
(Deep) Machine Learning Models Using in Silico
Model Outputs and Chemical Structure Parameters

Sebastian Schneckener ', Sergio Grimbs ', Jessica Hey ', Stephan Menz 2, Maren Osmers 2,

Steffen Schaper ', Alexander Hillisch 3, Andreas H Goller 3

Summary of models performance

Algorithms show equivalent performance for most parameters

* Good models for majority of PK R2 on test set

parameters 0.70
~\ S A\ O A\
< QL) o S S
o ;:E;‘F &N b \-‘:L- \.‘_‘.c;if g
Gradien

* C, ivand half life are difficultto o

0.60
predict 0.50
+ AZ imputation approach provides 40
better results for most properties (5 3g
in comparison with Alchemite 0.20
approach 0.10
* Nyain = 2758, Nyog; = 312 compounds 0.00
L @
O C, 7 _\"} N

» All PK parameters were log-transformed ;
except half-life (no transformation) and ©
bioavailability (logit)

» Achemite MT-AZ-Imp — AZ way of
imputation, missing in vitro data
11 replaced with in silico

Q‘L

Z-lmp mChemProp MT
ng ® Gaussian Process

http://www.drugdiscovery.net/tox2020/data/obrezanova.pdf



So where do we stand with data in safety today?

— Systems-based predictive signals
Often proxy measures (to reduce cost) e N
Historical data gets repurposed now ‘for Al

Not always relevant system/dose/time point

+ Exposure/PK

And/or “Mode of Toxicity” In vivo effect

B -
_ H o= H
synthesis : : i

— Endpoint-based predictive signals

“Models of models” — “the in silico model of the Glu/Gal
mitotoxicity model” ... is then meant to predict the in vivo situation

We need to care more about modelling the actual endpoint of
Interest (say, organ risk), not the proxy (say, assay) endpoint!

Often hypothesis-free (‘here we have our pile of data ... anyone
wants to have a go at it?’) instead of hypothesis-driven

Often ‘technology push’, instead of ‘science pull’



The question needs to come first... and then the data, then
the representation, and then the method
http://www.DrugDiscovery.NET/HowToLlie

Lots of
A method cannot attention
Can be save an unsuitable currently
combined Method representation here
(eg end-to- (Captur.es re!evant which cannot
end relationships) :
learning) remedy irrelevant
Representation data for anill
(Captures relevant thought-through
information) question
Data
(Relevance for question asked/suitable
labelling, amount, and quality)
- _ But we
o Question/Hypothesis need to
(Identification of key parameters/readouts needed to answer a
care more

guestion; practically relevant)

about this




Summary

Chemical and biological data is different from images, speech
This makes applicability of ‘Al’ in drug discovery (and safety) not
trivial

Both ‘omics/high-dimensional biology, and target-based

ap
Im
su

proaches have their value
pact of both experimental setup of data generation, and

pjective choices during data analysis (!) not to be

underestimated

Currently a lot of computer science-driven approaches, some of
which are more applicable in drug discovery than others (real
translation is necessary, but also better experimental design!)

Consortia on even larger scale are likely needed (for targeted data
generation, not just sharing what is there already)



Resources

Artificial Intelligence in Drug Discovery — What is Realistic,
What are lllusions?

Part 1: Ways to make an impact, and why we are not there
yet

Part 2: a discussion of chemical and biological data

Andreas Bender and Isidro Cortes, Drug Discovery Today
2021 (in press)

http://www.DrugDiscovery.NET/AIReview

“How to Lie With Computational Predictive Models in Drug
Discovery”

http://www.DrugDiscovery.NET/HowToLie



Thank you for listening!
Any questions?

Contact: ab454@cam.ac.uk

Personal email: maill@andreasbender.de
Web: http://www.DrugDiscovery.NET
Twitter: @AndreasBenderUK




