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1. Current state: The 3'd wave of computers in drug discovery

(80s, 2000, today) T time for realistic assessment has come
Fortune cover 1981 Recent headlines (2018-2020)

The Blumenthal Revival at Burroughs
Bold Departures in Antitrust SPOTLIGHT - 30 MAY 2018
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Funding going into Al in drug discovery 2021
~$4bn VC funding, $16bn total

Cumulative amount of funding, $ M.
VC funding, $ M.

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

https://www.biopharmatrend.com/post/397-pharmaceutical-artificial-intelligence-in-2021-key-developments-so-far/



Current discovery pipeline: Al-based start-ups vs big pharma
6Alati ve compani elgpd®0 pharma
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Significant number
of discovery/
preclinical
programs of Al
companies (~160
vs ~330)
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-> Little in vivo safety (Phase 1) data yet; virtually no in vivo efficacy (Phase 2/3) data yet

Jayatunga et al., Al in small-molecule drug discovery: a coming wave? Nature Reviews Drug Discovery 7 Feb 2022



Distribution of target profile similar, but focus on
areas of more data, less complex target pharmacology

More kinases and
enzymes in Al-
driven companies:
(a) Quite data-rich
(b) Less complex
pharmacology
than other target
classes

+ Transcription
factors

- No ion channels,
NHRs and
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Jayatunga et al., Al in small-molecule drug discovery: a coming wave? Nature Reviews Drug Discovery 7 Feb 2022



Little (but useful?) experimentation on chemistry level

5-HT1A & 5-HT2A
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- Red: Non-Al derived; green Al-derived; grey: discontinued
- Relatively little chemical novelty; but sometimes superior selectivity

- Be careful what you interpret into UMAP plots, chemical space is high-
dimensional; but when looking at structures you will come to similar conclusions

Jayatunga et al., Al in small-molecule drug discovery: a coming wave? Nature Reviews Drug Discovery 7 Feb 2022



Conclusion about the world as It Is

- Lots of activity in early stage pipeline of Al-first companies, but
often already explored targets, close analogues

- Appropriate question to ask: Where is the novelty?

- Data is often limiting factor T in both chemical and target space
(leads to work on well-explored targets, with more data, less
complex pharmacology)

- Is input (e.g. funding) success, or output?
- The f tdressti ginfeld drugo wi | | be cel

é tens of Dbillions went 1 nto f unoct
the null model would lead to an expected tens of approved drugs



2. How do we know that something works? What i1 s 0

- Core gquestion In science, core guestion for start-ups

- In theory we establish a method, use a benchmark, and know how well the
method works
- Inpracticet hi s doesn o0 tdrugdsaoveryy wor k 1 n
- Labels are either mostly only invitro-r e | evant |, or condi tet@®na

- Validation is costly (phase Il studies for efficacy; plus controls), so little prospective
data

-Diffircult to sample distribution I n cher
so performance depends heavily on test set

- Retrospective validation is equally futile (no prospective discovery,
predictivity for future projects unknown, all behave differently)

- Core reasons for problem: In chemical space proper sampling impossible,
underlying distribution unknown; conditionality of in vivo data



What to watch out for in validation T and why the
model, embedded into the process matters

- OProof by exampled abounds, withou

- Irrelevant endpoints abound (numerical improvements, endpoints that
donot di r ect invvo-televam detisaoh makingh t o

- Validation that matters includes the process and not only the model Iin
the validation (!)

- Further discussion of model validation in my blog:
http://www.DrugDiscovery.NET/HowToLie
- Nature Reviews Chemistry article o



Model validation vs process validation
(e.g. ligand structure-based property predictions)

Compound
with project Follow-up
context Prediction, assays, etc.
(Disease, Confidence

------ ¥» endotype, Decision in =s=ss=ss
target, target disease
organ, context (in
anticipated VIVO
dose in \ ] relevant!)

man, €) Y
Improving model performance

|

Improving drug discovery




Conclusion: So did Al contribute something to
drug discovery?

- Probably in some areas yes (e.g. target prediction, digital
pat hol ogy,

€ and to

Q: nlt wor ks
On t he ot her

practice

é), but

very pocessf | cu

- After ~$20bn VC funding into Al in drug discovery and ~$50bn
total funding we better see some successes!
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3. The Achilles heel of Al in DD: Data and proxy assays

nNneitos the data, stupi d!o



The quality of in vivo-relevant decisions matters
more than speed and cost!

O Speed - Time of phase reduced by 20%
W Quality - Failure rate reduced by 20%
Cost - Cost reduced by 20%

(in Sm at time of approval)
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In vivo-relevant decisions matter most!
Bute 1 s t hi glatafor empdels B r

- Chemical and biological data: Theflat-e ar t h  ( ~ 61 n
- And where a flat earth is great!

- Chemical and biological data: Theround-e ar t h ( ~ 01 1
-Drug di scovery data and 1 ts compl e

-Why algorithms from | mage and
translate to drug discovery



A simple view on the world: Linking Chemistry, Phenotype,
Targets / Mode of Action (myself, until ca. 2010)

<4 Qg’“ao
¢ ° Molecular

Structure
Phenotypic

Response Bioactivity
Data 1 Data

— \\

Phenotype 6 Pat hwapgfin/
Mode of Action

a. k. a. nNThe worl d
= NhWe Dbeli eve our
NCompound A 1 s tox
NCompound B Dbinds
NCompound C treats

Works In cases where data Is large-
scale, and homogenous, and we have
meaningful labels

Does not consider data conditionality,
e.g. dose, PK, translatability from
model system to in vivo setup,
endotype, genotype, etc. etc.



B U T é T h e W O r I d I S n O t f I a t . khf%?:“ Molecular

Structure

Phenotypi

Links between drugs/targets/diseases are quantitative, incompletely Response cactiy
characterized

Subtle differences in eg compound effects (partial vs full agonists, off- )é\

targets, residence times, biased signalling, etc.) Phenotype Pateye Pl

Mode of Action

OPat hwayso from very heterogenous underly
elements not captured etc.

Effects are state-dependent (variation between individuals, age, sex, co-
me d i c a tiiPHK is eftgn rather neglected in Al approaches

Phenotyping Is sparse, subjective (deep phenotyping?)
We dondét understand biology (O6shoed syst emo

| abel, and measur e, hence &

We label what we can measure: 6 dchnology pushé scencépulld (! )
Areourlabelsi 6drug treats di sease X0, 0l 1 ga
t ar get -méanjngfel?

Conditionality: Causality, confidence,

Computer science I s tremendously power



Are our understanding and data good enough? The @

many facets of ketamine

O
- Ketamine both used as (rather safe) anaesthetic ( ), approved since ‘
1970, as well as a street drug

- In 2000 effect as antidepressant, when dosed significantly lower, also
bronchodilator (acute asthma);

- Ketamine long been thought to act via blocking the NMDA receptor - but other
NMDA blockers such as memantine and lanicemine have not been successful in
clinical trials (as antidepressants)

- Also the opioid system implicated in action of ketamine (naltrexone/opioid
antagonist influences its effects)

- Furthermore, a metabolite of ketamine has recently been found to be active in
animal models of depression

€ etc. etc. (disease endotype,co-me di cati on, accumul ati on,

Das, J. Repurposing of Drugsi The Ketamine Story. J. Med. Chem. 2020 (ASAP Atrticle)



Example of conditional |labels: adverse reactions

- TDo@s ug Y cause adverse reaction 27?7 Y

- Pharmacovigilance Department: Yes,ifwe havee
- A patient with this genotype (which is generally unknown)
- Who has this disease endotype (which is often insufficiently defined)
- Who takes dose X of drug Y (but sometimes also forgets to take it)
- With known targets 1. ..n, but also unknown
- Then we see adverse reaction (effect) Z é
- But only in x% of all cases and
- With different severity and
- Mostly if co-administered with a drug from class C, and then
- More frequently in males and
- Only long-term
- (Etc.)

- So 1 does drug Y cause adverse event Z?



1. Molecules are no graphs!
You can use the connectivity
table to derive a

representation of it though,
which in some cases can be
suitable

2. Learned representations good
for large-scale, homogenous data;
but still suffer from conceptual
problem of data conditionality in
drug discovery, and lack of in vivo-
relevant data




