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The 3rd wave of computers in drug discovery (80s, 2000, today) 

– time for realistic assessment has come
Fortune cover 1981 Recent headlines (2018-2020)



Old enough to remember 2000 biotech bubble, Human 

Genome Project, etc.

T. Reiss, Trends in Biotechnology, 2001:

“The number of drug targets will increase by at least one order of magnitude 
and target validation will become a high-throughput process.”

“More drug targets… 3,000–10,000 targets compared with 483”

Recent (NRDD 2017) estimates of drug targets put the number currently at 
around 667

-> How to go from technology and potential to applications/better decisions?



Funding going into AI in drug discovery 2021: 

~$4bn VC funding, $16bn total 

https://www.biopharmatrend.com/post/397-pharmaceutical-artificial-intelligence-in-2021-key-developments-so-far/



Current discovery pipeline: AI-based start-ups vs big pharma

Jayatunga et al., AI in small-molecule drug discovery: a coming wave? Nature Reviews Drug Discovery 7 Feb 2022

Significant number

of discovery/ 

preclinical

programs of AI 

companies (~160 

vs ~330)

Very little Phase 1, 

less Phase 2, no 

Phase 3

-> Little in vivo safety (Phase 1) data yet; virtually no in vivo efficacy (Phase 2/3) data yet

‘AI-native companies’ Top 20 pharma



Conclusion about the world as it is

- No in vivo relevant discovery coming out of ‘AI’ confirmed so far

- Lots of activity in early stage pipeline of AI-first companies, but 
often already explored targets, close analogues (Jayatunga et al.)

- Data is often limiting factor – in both chemical and target space 
(leads to work on well-explored targets, with more data, less 
complex pharmacology)

- Appropriate question to ask: Where is the novelty?

- Is input (e.g. funding) success, or output? 

- The first ‘AI-designed drug’ will be celebrated by the media, but…

… tens of billions went into funding AI in drug discovery, so even the 
null model would lead to an expected tens of approved drugs
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The quality of in vivo-relevant decisions matters 

more than speed and cost!

Bender and 
Cortes, Drug 
Discovery 
Today 2021
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Key point: We often cannot label our data 

properly in the life sciences

- Machine learning/AI knows unsupervised or supervised methods

- Predictive methods are (usually) supervised, and need data points 
with labels (active/not active; or quantitative labels, etc.)

- Those labels need to come from experiments

- Experiments (and hence labels) often either fall into the ‘large-scale, 
but little in vivo relevance’ or ‘in vivo relevant, but small scale and 
conditional’ category

- This is a problem for AI/ML in drug discovery and safety

- So should we use and analyze our data? Absolutely!

- But we need to work towards in vivo relevance of data, jointly



A simple view on the world: Linking Chemistry, Phenotype, 

Targets / Mode of Action (myself, until ca. 2010)
a.k.a. “The world is flat”

= “We believe our labels” 

“Compound A is toxic”, 
“Compound B binds target X”,
“Compound C treats disease Y”, …

Works in cases where data is large-
scale, and homogenous, and we have 
meaningful labels

Does not consider data conditionality, 
e.g. dose, PK, translatability from 
model system to in vivo setup, 
endotype, genotype, etc. etc.

Molecular
Structure

Phenotype
Protein / 

Mode of Action

Bioactivity 

Data

‘Pathways’

Phenotypic 

Response 

Data



The ‘flat earth’ view can still help! Eg Public target 

prediction model, based on ~200 mio data points

- E.g. work of Lewis Mervin, with AstraZeneca

- 2015, J. Cheminformatics (7) 51

- ChEMBL actives (~300k), PubChem inactives (~200m); 1,080 targets

- Can be retrained on in-house data

- https://github.com/lhm30/PIDGIN

Also data publicly available



BUT…The world is not flat. What now?

- Links between drugs/targets/diseases are quantitative, incompletely 
characterized

- Subtle differences in eg compound effects (partial vs full agonists, off-
targets, residence times, biased signalling, etc.)

- ‘Pathways’ from very heterogenous underlying information; dynamic 
elements not captured etc.

- Effects are state-dependent (variation between individuals, age, sex, co-
medication…) – PK is often rather neglected in AI approaches

- Endotyping is not sufficient – how do we characterize disease/phenotypes?

- We don’t understand biology (‘the system’), we don’t know what we should 
label, and measure, hence … 

- We label what we can measure: ‘Technology push’ vs ‘science pull’ (!)

- Are our labels – ‘drug treats disease X’, ‘ligand is active against 
target Y’, … - meaningful?

- Conditionality: Causality, confidence, quantification, ….?

- Computer science is tremendously powerful… but is our data?

?



Example of labelling problems: adverse reactions

- “Does drug Y cause adverse reaction Z? Yes, or no?”

- Pharmacovigilance Department: Yes, if we have… 

- A patient with this genotype (which is generally unknown) 

- Who has this disease endotype (which is often insufficiently defined) 

- Who takes dose X of drug Y (but sometimes also forgets to take it)

- With known targets 1...n, but also unknown targets (n+1…z) 

- Then we see adverse reaction (effect) Z … 

- But only in x% of all cases and 

- With different severity and

- Mostly if co-administered with a drug from class C, and then 

- More frequently in males and

- Only long-term

- (Etc.)

- So – does drug Y cause adverse event Z? 



Data/’AI’ in early discovery vs efficacy/safety

Early discovery/proxy space 
(usually in vitro)

- Often ‘simple’ readouts (eg
protein activity), hence…

- Large number of data points 
for training models

- Models have clear labels 
(within limits of model system, 
eg ‘ligand is active against 
protein at IC50<10uM’, or 
solubilities, logP, or the like)

- Good for model generation: 
Many, clearly categorized data 
points

Efficacy/safety (usually in vivo)

- Quantitative data (dose, exposure, …) 

- More complex models (to generate 
data), fuzzy labels (classes ‘depend’, 
on exposure, multiple eg
histopathological endpoints) –
hence…

- Less, and less clearly labelled data: 
Difficult from machine learning angle

- Data: Difficult to generate, eg animal 
data tricky, even within single 
company (confounding factors 
abound)



Problem setting in early discovery vs safety

Early discovery/proxy space

- Discovery setting – ‘find me 
suitable 100s or 1000s out of 
a million’ (eg screening)

- Anything fulfilling (limited) set 
of criteria will do ‘for now’, 
predicting presence of 
something

- Computationally generative
models often fine

Efficacy/safety

- Need to predict for this particular 
data point, quantitatively!

- Long list of criteria to rule out, 
based on limited data… 
predicting absence of 
‘everything’ (eg different modes 
of toxicity)

- Predictive models (more tricky 
than generative!)



Bender & Cortes,

Drug Discovery Today, 2021 



Much of the data we have has been generated with proxy 

assays. Why is this a problem for AI in drug discovery?

- There is what we are really interested in - say, mitochondrial safety, 
Drug-Induced Liver Injury (DILI), …

- And there is what we measure as an assay endpoint – say, 
cytotoxicity in a Glu/Gal (differential cytotoxicity) assay to approximate
mitochondrial safety; Bile Salt Export Pump (BSEP) inhibition to 
approximate DILI, …

- Take-away: ‘Proxy’ assays measure only part of reality, in a particular 
assay, with particular conditions

- Not to be confused with property itself (!)

- Problem: Proxy endpoint (a) taken as ‘ground truth’ in AI in drug 
discovery, (b) embedding into project context neglected



Key problem in chemical datasets: Biases! 

Influences all explainable AI approaches (!)

- Chemical space is 1063 - however, our data (large is 106

compounds) clusters tremendously
- Drugs? Fast followers, analogues

- Published literature? Series (for SAR)

- Etc

- Example (from own work): 649 bitter compounds vs 13k 
compounds from MDL Drug Data Repository

- Characteristic features for bitter compounds?

Sugar rings! (due to glycosylation of natural products, 
which are often bitter; shown are fingerprint features which 
capture parts of those rings)

Rodgers, J. Chem. Inf. Model. 2006, 46, 569.



The question needs to come first… and then the data, then 

the representation, and then the modelling method!

http://www.DrugDiscovery.NET/HowToLie 

Lots of 

attention 

currently 

here…

But we 

need to 

care more 

about this
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What is a computational model?

We have (from experiments): Molecule -> Endpoint

We model: Molecule -> Descriptor -> Model -> Endpoint

Measured (condition: experiment)
IC50= ..nM

IC50= ..nM



Descriptors
- Provide an information-preserving representation of input data (e.g.

structures) for the model

- Either knowledge-based (e.g. reactive groups), or (usually) ‘trial 
and error’

- Can also be biological readouts (gene expression, cell morphology)

- Can be learned from data, but only if there is enough data, and we 
can meaningfully label!

Fingerprints, 

pharmacophores, 

surface properties, 

substructures/ 

functional groups, 

shapes, 

physchem

properties etc.

0100101010000…



Types of models (all of which can involve feature 

selection)

- Similarity-based 
(single 
neighbour, 1-NN)

- Clustering-based 
(multiple 
neighbour, k-NN)

- Machine learning 
models



How do we know that something works? What is ‘validation’?

- Core question in science, core question for start-ups

- In theory we establish a method, use a benchmark, and know how well the 
method works

- In practice this doesn’t really work with in vivo data  –

- Labels are either mostly only in vitro-relevant, or conditional (‘depend’ on dose, etc)

- Validation is costly (e.g. phase II studies for efficacy; plus controls), little 

prospective data

- Difficult to sample distribution in chemistry/’project’ space well (diversity, 

number), so performance depends heavily on test set

- Retrospective validation is all we can do (but no prospective discovery, 
predictivity for future projects unknown, all behave differently)



Why ‘validation’ of a model is tricky: You get the numbers you 

want (depending on the question you ask/data set you use!)

‘Training Set’

‘External 

Test Set’

‘Validation Set’

Next 

compound?

- Chemical space is 

large; data sets are 

small

- Model is unable to 

generalize to unseen 

spaces

- Effect of changes is 

conditional on 

scaffold/context

- Sampling of data is 

generally insufficient

- “Every model is a local 

model”



Model validation vs process validation 

(e.g. compound structure-based property predictions)

Follow-up 

assays, etc.

Decision in 

disease 

context (in 

vivo

relevant!)

Compound 

with project 

context 

(Disease, 

endotype, 

target, target 

organ, 

anticipated 

dose in 

man,…) 

Improving drug discovery

Model

Improving model performance

Input

Data
Prediction,

Confidence



Using computational models for decision making often disappoints 

since (a) model validation is decoupled from process validation, and 

(b) many (most!) models use only proxy data (‘model of models’)

Improving model performance

Model

Input

Data
Prediction,

Confidence

Follow-up 

assays

Decision in 

disease 

context (in 

vivo

relevant!)

Compound 

with project 

context 

(Disease, 

endotype, 

target, target 

organ, 

anticipated 

dose in 

man,…) 

Improving drug discovery

DETACHED FROM EACH OTHER



Model validation – two resources

1. http://www.drugdiscovery.net/HowToLie

2. Nature Reviews Chemistry 2022 article



Questions to ask your friend, the modeler (1/2)

- Key goal: How good is the prediction for my new compound?

- Data

- What is the number of data points in the model, and is chemical space 

coverage relevant for my application? 

- Performance is a function of space! Less space… gives a (numerically) 

better model! Performance/applicability domain is a trade-off!

- What is the closest neighbour (according to mechanistically 

interpretable space; model space; similarity space), and is it relevant, 

given the particular question being asked?

- Descriptors

- How was the descriptor chosen, and is there a mechanistic rationale for 

its choice? (depends on understanding of system; e.g. reactive 

substructures, bioactivity-based, generic similarity, …)



Questions to ask your friend, the modeler (2/2)

- Models

- Was there an external test set used in model validation (and was it 

large, diverse, relevant to new compound predictions)?

- Does model performance change, depending on parameter choices 

(indicates model instability), and training/test set splits (indicates 

overfitting)?

- Is there an applicability domain/confidence that the model assigns –

and does it actually work on the external test set (rather often it 

does not!)?

- If all of this is answered satisfactorily, then (a) data in the 
model covers my new molecule, with (b) a suitable 
descriptor, and provides (c) a confidence with the prediction
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Applications

- Cell Painting – What is it?

- Predicting mitochondrial toxicity

- Merging chemical structural and cell painting 
information

- Predicting mitochondrial toxicity of PROTACs

- Representing and understanding high-dimensional 
feature spaces



Problem

- In many (most?) cases we don’t understand how 
something works (i.e., biology)

- If we understand how something works we can do 
hypothesis-driven, science-pull driven data generation

- If we don’t understand how something works we need to 
revert to hypothesis-free, technology-push driven data 
generation and describe variance

- In this case we need independent pieces of information, 
and we need to retro-fit to what is relevant



Why –omics, why cell morphology, … if we have 

the structure?

D. W. Young et al., Integrating high-content screening 
and ligand-target prediction to identify mechanism of 
action, Nature Chem. Biol. 2008



Anika Liu and Srijit Seal et al

Cell Painting cell morphology assays:

Six stains/five channels/eight compartments



Features of the Cell Painting Assay –
Form basis (input variables) of machine learning model 

Bray, M. A.; Gustafsdottir, S. M et al., A Dataset of Images and Morphological Profiles of 30 000 Small-
Molecule Treatments Using the Cell Painting Assay. GigaScience. Oxford University Press December 1, 

2017, 1–5.

For each identified compartment, measurements include:

• Counts

• Size: area, volume, perimeter, diameter

• Shape

• Texture (smoothness)

• Intensity

• Spatial relationships between features



Toxicants act on multiple pathways to exhibit mitochondrial toxicity, mostly inhibition of mitochondrial 

respiratory chain or uncoupling of oxidative phosphorylation.

Mitochondrial toxicity

@srijitseal

S. Seal et al. Integrating Cell Morphology with Gene Expression and Chemical 

Structure to Aid Mitochondrial Toxicity Detection, bioRxiv 2022



Dataset

Training Dataset: 

• Tox21 Mitochondrial membrane potential disruption assay hit calls 

(summary assay) 

• 382 compounds

• 62 Mitotoxic

External Test:

• Additional mitotox assays from CHEMBL, PubChem, Mitotox

Database relevant to mitochondrial potential

• 244 compounds

• 47 Mitotoxic

Hemmerich, J., Troger, F., Füzi, B. & F.Ecker, G. Using Machine Learning Methods and 

Structural Alerts for Prediction of Mitochondrial Toxicity. Mol. Inform. 39, (2020)

@srijitseal



Toxic compounds are more similar in morphology space than 

fingerprint space
Morphological space is more able to discriminate between mitochondrial toxicants and non-toxicants than
structural fingerprints.

Intra- and inter-class pairwise similarity for 486 compounds (85 mitotoxic) 



Morphology space clusters compounds with similar mechanisms

Compounds clustered
further away from the
distribution of majority
of compounds having
similar mechanisms of
actions, for example,
microtubule disruptors

Principal Component Analysis of 542 
compounds in 110-dimensional Cell 

Painting feature space. 



Fusion models perform better 

on external test set

• External test set: F1 Score increases by

60% (0.25 to 0.42 in absolute terms)

when using fusion models compared to

Morgan fingerprints.

• Our method achieve higher sensitivity

(0.79 in our study vs 0.37 in Apredica

MitoMass) with comparable balanced

accuracies (0.69 in our study vs 0.65 in

Apredica MitoMass).

Hallinger, D. R., Lindsay, H. B., Friedman, K. P., Suarez, D. A. & Simmons, S. O. 

Respirometric screening and characterization of mitochondrial toxicants within the toxcast 

phase i and II chemical libraries. Toxicol. Sci. 176, 175–192 (2020)
@srijitseal



Biological significance of Cell Painting features with respect to Mitochondrial Toxicity :

Cell Painting features related to mitotoxicity

@srijitseal



Application to mitochondrial toxicity of PROTACs

• Work by Maria-Anna Trapotsi, Kevin Moreau, and others

• With AstraZeneca



Multi-dimensional scaling shows better separation of 

toxicants from non-toxicants at 1 and 10uM than 0.1uM



Prospective validation of mitotoxicants successful



Morphological Similarity
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Morphological Similarity Morphological Similarity

Cell PaintingMorgan Fingerprint Merged Models

Merged Models can improve applicability domain (here for Tox21 
endpoint, separate work)

@srijitseal



• Cell morphological readouts contain information on several bioactivity

endpoints

• Features are highly correlated – we can remove some of them, but then we

lose biologically meaningful information

• We obtain here feature maps which group correlated features, which have

importance for a particular endpoint

• We can obtain per-endpoint and per-compound importance heatmaps using

Grad-CAM.

But how to interpret Cell Painting space, which is highly 
correlated?

@srijitseal



t-SNE of Feature Map 

Jonker-Volgenant

algorithm

Images

Cell_Texture_SumAvergage_AGP_10_0

Method1. Prepare Feature Map

Tox21 Assays

e.g. ER Stress

2. Predict Endpoint of test set

Model: EfficientNet B0

3. Interpretation using Grad-CAM

More important to model

Less contributing to model

@srijitseal



Features are related by measurement type

• Majority of features are

related by measurement

function than by objects

they were measured in

(cells, cytoplasm, or nuclei)

• For example, granularity,

features are clustered

together from all

compartments which means

information on granularity

was homogenous

throughout the channels.

@srijitseal



“The universe of toxic endpoints in cell painting feature space”

For models predicting proliferation decrease endpoint: 

30

Niclosamide Colchicine Lovastatin Cycloheximide Nilutamide Mifepristone

mitochondrial toxicity

inhibits cell proliferation in the 

G(1) phase of the cell cycle antiandrogens

@srijitseal



Microtubule disruptors

causing apoptosis

Microtubule disruptors and ER Stressors affect texture features

Causing ER stress.

Cycloheximide Daunorubicin Niclosamide

2,5-Di-tert-butylhydroquinone
ParbendazolePaclitaxel Fluspirilene

Pimozide

@srijitseal



A few thoughts on –omics/cell morphology data 

for anticipating compound safety

- We mostly live in hypothesis-free, technology-push space – we should 
move to hypothesis-driven, science-pull space where we can

- ‘Sometimes you see something – but sometimes nothing, and 
sometimes far too much’. We often don’t know where we are when / 
don’t understand applicability domain of readouts

- We seem to be very good at detecting ‘the obvious’ (‘tubulin inhibitor’, 
‘HDAC inhibitor’, etc.), but often not the finer details

- To change this needs real consortia – including experimental 
design and prospective data generation, not just ‘sharing what we 
generated for entirely different reasons ages ago anyway’ (since 
this is often not what helps us now!)



Conclusions
- We should analyze our data, absolutely! 

- Life science data is difficult to label, and hence to model

- ‘Big data’ is good, but heterogeneous data makes quantitative 
decisions often difficult

To advance, we 

- Likely need forward-looking consortia, for generation and 
evaluation of relevant data to predict in vivo-relevant endpoints

- Need to take care to understand applicability domain of readouts 
better

- Embedding into process, and building the right model for decision 
making is key (it’s not about ‘numbers’, outcome for the real-world 
process is what matters!)





‘In Silico modelling for dummies’ session 

organized by the British Toxicology Society

- In November 2022

- 2 Hour session – Background, and seminar on ‘how to 
build your own models’

- Mail me if you are interested and I will keep you posted: 
ab454@cam.ac.uk



Thank you for listening!

Any questions?

Contact: ab454@cam.ac.uk

Personal email: mail@andreasbender.de 

Web: http://www.DrugDiscovery.NET

Twitter: @AndreasBenderUK


